Hybrid Artificial Intelligence Models with Multi Objective Optimization for Prediction of Tribological Behavior of Polytetrafluoroethylene Matrix Composites

Author:

Ibrahim Musa AlhajiORCID,Çamur HüseyinORCID,Savaş Mahmut A.,Sabo Alhassan Kawu,Mustapha Mamunu,Abba Sani I.

Abstract

This study presents multi-response optimization and prediction tribological behaviors polytetrafluoroethylene (PTFE) matrix composites. For multi-response optimization, the Taguchi model was hybridized with grey relational analysis to produce grey relational grades (GRG). A support vector regression (SVR) model was combined with novel Harris Hawks’ optimization (HHO) and swarm particle optimization (PSO) models to form hybrid SVR–HHO and SVR–PSO models to predict the GRG. The prediction ability of the models was appraised using the coefficient of determination (R2), correlation coefficient (R), mean square error (MSE), root mean square (RMSE), and mean absolute percentage error (MAPE). The results of the multi-response optimization revealed that the optimal combination of parametric values of GRG for minimum tribological rate was 9 N-1000 mesh-0.14 ms−1-55 m (L3G1SD3SS3). An analysis of variance of the GRG showed that a grit size of 94.56% was the most significant parameter influencing the tribological behavior of PTFE matrix composites. The validation results revealed that an improvement of 52% in GRG was achieved. The prediction results of all models showed that the SVR–PSO and SVR–HHO models were superior to the SVR model. Furthermore, the SVR–HHO model produced superior prediction error and the best goodness of fit over the SVR–PSO model. These findings concluded that hybrids models are promising tools in the multi-response optimization and prediction of tribological behaviors of PTFE matrix composites. They can serve as a guide in the design and development of tribological materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3