Effect of Salinity on Physiological and Biochemical Parameters of Leaves in Three Pomegranate (Punica Granatum L.) Cultivars

Author:

Dichala OlgaORCID,Giannakoula Anastasia EvripidisORCID,Therios Ioannis

Abstract

Salinity is one of the most important abiotic stresses affecting crop yield. It is important to exploit pomegranates’ potential against salts because they are considered beneficial plants for human health due to their antioxidants and they are often exposed to severe salinity stress in the field. Three pomegranate cvs. were chosen as model plants for assessing the impact of different salt stress in the cultivation. The aim of this study was to evaluate the physiological and biochemical response of three pomegranate varieties (Punica granatum L.) (Wonderful, Ermioni, and Grenada) under different saline conditions. The plants were grown in a sand/perlite substrate in a 1:1 ratio and, throughout the experiment, were irrigated with a Hoagland nutrient solution, modified to contain four concentrations (0, 25, 50, and 75 mM) of NaCl, KCl, and K2SO4. At the end of the experiment, we measured the (a) concentrations of carotenoids and porphyrin of leaves; (b) phenols and flavonoids contents, and antioxidant capacity of leaves; (c) lipid peroxidation level; (d) leaf water potential; and (e) proline concentration. Ermioni contained the maximum concentration of proline phenols and flavonoids and antioxidant capacity in all salts. Furthermore, reductions in chlorophyll and carotenoid concentration were recorded in all cultivars. Grenada possessed the lowest porphyrin concentration. In conclusion, our results showed that Grenada was the most salt-susceptible cultivar. Salinity treatment triggered the enhancement in lipid peroxidation in the sensitive cultivar, while no change in lipid peroxidation level was observed in the tolerant cultivars. These data provide further support to the hypothesis that a mechanism exists that excludes salinity from the roots of tolerant cultivars, as well as an internal mechanism of tolerance that minimizes the accumulation of lipid peroxides through a higher proline content related to osmoregulation and membrane stabilization.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3