Abstract
The present work studies the electrical and electrothermal properties of CNT/GNP-doped nanocomposites for optimizing their anti-icing and de-icing capabilities. Here, a comparison between 3D-printed circuits and coatings based on these materials is carried out. In this regard, the higher electrical conductivity that is achieved by the specimens when increasing the nanoparticle content and the higher cross-sectional area of the coatings with regard to the 3D-printed circuits induces a higher heat generated by the Joule’s effect. Moreover, the successful de-icing test performed by the specimen with the highest self-heating capability, evinces that the studied nanocomposites are suitable for de-icing purposes.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献