Performance-Based Fibre Design for Ultra-High Performance Concrete (UHPC)

Author:

Lanwer Jan-Paul,Empelmann MartinORCID

Abstract

The paper presents a method to establish a performance-based fibre design of high-strength micro steel fibres for ultra-high-performance concrete (UHPC). The performance-based fibre design considers effects of fibre layout, fibre orientation, and type of loading (quasi-static and cyclic) and expands the current approach using experiences and suitability testing results. The performance-based fibre design is based on a so-called utilization rate, which is determined via pullout tests of high-strength micro steel fibres in UHPC under quasi-static as well as high cyclic loading with varying orientations and embedment depths. The utilization rate for a straight fibre pullout is 0.27 on average considering the measured tensile strength of the fibre and 0.50 considering the manufacturers specifications. For inclined fibres, additional bending stresses occur at the exit point of the fibre channels, leading to a significant increase in local tensile stress. Therefore, the utilization rate of inclined fibres under quasi-static loading is approximately 60–70% higher than in the case of straight embedded fibres (comparing it to the measured tensile strength). Comparing the utilization rate to the manufacturer’s specification, it increases to approximately 1.00. Under cyclic loading, the additional bending stresses in inclined fibres result in a local increase of the load amplitude, leading to a reduced fatigue resistance and premature fibre rupture, underlining the feasibility of a performance-based fibre design.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3