Unsupervised and Supervised Feature Selection for Incomplete Data via L2,1-Norm and Reconstruction Error Minimization

Author:

Cai JunORCID,Fan Linge,Xu Xin,Wu Xinrong

Abstract

Feature selection has been widely used in machine learning and data mining since it can alleviate the burden of the so-called curse of dimensionality of high-dimensional data. However, in previous works, researchers have designed feature selection methods with the assumption that all the information from a data set can be observed. In this paper, we propose unsupervised and supervised feature selection methods for use with incomplete data, further introducing an L2,1 norm and a reconstruction error minimization method. Specifically, the proposed feature selection objective functions take advantage of an indicator matrix reflecting unobserved information in incomplete data sets, and we present pairwise constraints, minimizing the L2,1-norm-robust loss functionand performing error reconstruction simultaneously. Furthermore, we derive two alternative iterative algorithms to effectively optimize the proposed objective functions and the convergence of the proposed algorithms is proven theoretically. Extensive experimental studies were performed on both real and synthetic incomplete data sets to demonstrate the performance of the proposed methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Elements of Information Theory;Cover,1999

2. Pattern Classification;Hart,2000

3. Thirteen Ways to Look at the Correlation Coefficient

4. A review of unsupervised feature selection methods

5. Adaptive unsupervised multi-view feature selection for visual concept recognition;Feng;Proceedings of the Asian Conference on Computer Vision,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3