Acoustic Propagation Characteristics of Unsaturated Porous Media Containing CO2 and Oil

Author:

Qi YujuanORCID,Zhang Xiumei,Liu Lin

Abstract

Carbon dioxide geological utilization and storage (CGUS) is an effective way to mitigate climate warming. In this paper, we resorted to Lo’s model to analyze the dispersion and attenuation characteristics of unsaturated porous media. Based on this, we analyzed the sensitivity of the first compressional wave (P1) and the shear wave (S) to various physical parameters. In addition, the modified models of live oil’s velocity and density were proposed, which were verified by experimental data under the consideration of CO2 dissolution. It is shown that the velocities and attenuations of P1 and S waves are influenced by various parameters, especially CO2 saturation and pore fluid parameters, such as density and velocity. In particular, with increasing CO2 saturation, the sensitivity of P1 velocity decreases, while that of the S velocity increases. Better monitoring results can be achieved by combining P1 and S waves. Finally, the acoustic response was analyzed under the modified model. With the increase in CO2 saturation, the P1 velocity decreases, while the S velocity becomes almost constant and then linearly increases, with the trend changing at the critical saturation. The study provides a more precise basis for monitoring the security of CO2 injection in CGUS.

Funder

National Natural Science Foundation of China

Strategic Pilot and Technology Special of Chinese Academy of Sciences, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3