Design of an In-Process Quality Monitoring Strategy for FDM-Type 3D Printer Using Deep Learning

Author:

Sampedro Gabriel Avelino R.ORCID,Agron Danielle Jaye S.,Amaizu Gabriel ChukwunonsoORCID,Kim Dong-Seong,Lee Jae-MinORCID

Abstract

Additive manufacturing is one of the rising manufacturing technologies in the future; however, due to its operational mechanism, printing failures are still prominent, leading to waste of both time and resources. The development of a real-time process monitoring system with the ability to properly forecast anomalous behaviors within fused deposition modeling (FDM) additive manufacturing is proposed as a solution to the particular problem of nozzle clogging. A set of collaborative sensors is used to accumulate time-series data and its processing into the proposed machine learning algorithm. The multi-head encoder–decoder temporal convolutional network (MH-ED-TCN) extracts features from data, interprets its effect on the different processes which occur during an operational printing cycle, and classifies the normal manufacturing operation from the malfunctioning operation. The tests performed yielded a 97.2% accuracy in anticipating the future behavior of a 3D printer.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3