Efficient Batch Fully Homomorphic Encryption with a Shorter Key from Ring-LWE

Author:

Chen Yuyue,Huang Ruwei,Yang Bo

Abstract

Fully homomorphic encryption allows users to use the computing resources of cloud servers for the computation of encrypted data without worrying about data leakage. The fully homomorphic encryption approach has problems with excessive noise and the expansion of the ciphertext dimension after the homomorphic evaluation. The key switching technology effectively solves the problem of the ciphertext dimension expansion. The generated evaluation key is a masked secret key that must be shared between the data owner and the computational entity, so the security must be guaranteed. In the RLWE-based FHE scheme, the efficiency improvement of the key switching depends on the circular security assumption, meaning the security needs to be improved. To solve the above problems, we select the secret key from the noise distribution with variable parameters so that the evaluation key and the initial noise of the encryption scheme are smaller. Specifically, the secret key is replaced after each homomorphic evaluation to ensure the security. We use the “modulus scaling” method to control the noise generated by itself, rather than the BitDecomp technology, which is complex when applied to polynomials. Finally, we combine the packing technology that relies on the polynomial CRT (Chinese remainder theorem) to design a batch-leveled fully homomorphic encryption scheme. We analyze the scheme’s noise, security proof, and specific security parameters. Compared with the FV12 scheme, our scheme is more secure. Compared with the MB18 scheme, our evaluation key size is smaller.

Funder

the National Natural Science Foundation Project of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference;Chen;Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,2019

2. Formidable Challenges in Hardware Implementations of Fully Homomorphic Encryption Functions for Applications in Machine Learning;Koç;Proceedings of the 4th ACM Workshop on Attacks and Solutions in Hardware Security,2020

3. Round efficient secure multiparty quantum computation with identifiable abort;Alon;Proceedings of the 41st Annual International Cryptology Conference, CRYPTO 2021,2021

4. Multiparty reusable non-interactive secure computation from LWE;Benhamouda,2021

5. Fully Homomorphic Encryption Using Ideal Lattices;Gentry;Proceedings of the forty-first annual ACM symposium on Theory of computing,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Secure Homomorphic Encryption Scheme;2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3