Inverse Modeling of Seepage Parameters Based on an Improved Gray Wolf Optimizer

Author:

Shu Yongkang,Shen ZhenzhongORCID,Xu Liqun,Duan Junrong,Ju Luyi,Liu Qi

Abstract

The seepage parameters of the dam body and dam foundation are difficult to determine accurately and quickly. Based on the inverse analysis, a Gray Wolf Optimizer (GWO) was introduced into this study to search the target hydraulic conductivity. A novel approach for initialization, a polynomial-based nonlinear convergence factor, and weighting factors based on Euclidean norms and hierarchy were applied to improve GWO. The practicability and effectiveness of Improved Gray Wolf Optimizer (IGWO) were evaluated by numerical experiments. Taking Kakiwa dam located on the Muli River of China as a case, an inversion analysis for seepage parameters was accomplished by adopting the proposed optimization algorithm. The simulated hydraulic heads and seepage volume agree with measurements obtained from piezometers and measuring weir. The steady seepage field of the dam was analyzed. The results indicate the feasibility of IGWO in determining the seepage parameters of Kakiwa dam.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Seepage monitoring analysis and safety assessment for Yatang dam;Liu;J. Yangtze River Sci. Res. Inst.,2007

2. Stability analysis of seepage on the accumulation dam of a phosphogypsum tailings;Chu;J. Eng. Geol.,2016

3. Failure models of a loess stacked dam: a case study in the Ansai Area (China)

4. Detection Model for Seepage Behavior of Earth Dams Based on Data Mining

5. Analysis of sluice foundation seepage using monitoring data and numerical simulation;Fan;Adv. Civ. Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3