Abstract
Soil-cement mixtures reinforced with fibres are an alternative method of chemical soil stabilisation in which the inherent disadvantage of low or no tensile or flexural strength is overcome by incorporating fibres. These mixtures require a significant amount of time and resources for comprehensive laboratory characterisation, because a considerable number of parameters are involved. Therefore, the implementation of a Machine Learning (ML) approach provides an alternative way to predict the mechanical properties of soil-cement mixtures reinforced with fibres. In this study, Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Random Forest (RF), and Multiple Regression (MR) algorithms were trained for predicting the elastic modulus of soil-cement mixtures reinforced with fibres. For ML algorithms training, a dataset of 121 records was used, comprising 16 properties of the composite material (soil, binder, and fibres). ANN and RF showed a promising determination coefficient (R2 ≥ 0.93) on elastic modulus prediction. Moreover, the results of the proposed models are consistent with the findings that the fibre and binder content have a significant effect on the elastic modulus.
Funder
Fundação para a Ciência e Tecnologia
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献