Determination of the Length of the Rock Bolts for Tunnels with Consideration of the Nonlinear Rheological Behavior of Squeezing Rock

Author:

Jiang Yu,Li Ning,Jiang Hao-HongORCID,Zhou Ming-LiangORCID,Zhang Jiao-LongORCID

Abstract

An accurate model for the prediction of the rheological behavior of surrounding rocks is essential to the designing of rock bolts for tunnels under squeezing conditions. Our understanding of the state of the art suggests that the rheology of rock consists of the transient, the steady-state, and the accelerated regimes. Thus, a visco-elastic-plastic rheological model, namely the Komamura-Huang-Bingham model, was developed. The model used the Drucker-Prager yield criterion in order to consider the effects of the intermediate principal stress on the strength of the rock mass. The developed model was implemented in the framework of finite element simulations. It was validated by comparing the simulation results with the on-site monitoring data. The focus of the simulations was on the mechanical behavior of the rock bolts and the surrounding rock mechanics during the construction of the tunnel. A sensitivity analysis was performed with respect to the length of the bolts and the stress-to-strength ratio of the rock was performed. It was shown that increasing the length of the bolts up to 9 m results in a reduction in rock deformation. This critical value of the bolts’ length is approximately equal to the diameter of the investigated tunnel. A further increase in the length results in an insignificant reduction in the deformation of the surrounding rock. In the case of the Class A and B squeezing conditions suggested by Hoek, the deformation of the surrounding rock is insensitive to the length of the bolts. The elongation of the bolts does not change considerably with time, which is in contrast to the Class C and D squeezing conditions. The extent of the plastic zone is related to time and in situ stress but is independent of the length of the bolts. This is consistent with the characteristics of the nonlinear rheology of rock mass.

Funder

Shanghai Rising-Star Program

Yunnan Hydropower Survey, Design and Research Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3