The Influence of Bit Edge Shape Parameters on Bone Drilling Force Based on Finite Element Analysis

Author:

Huang Tiancheng,Du Maohua,Gu Xuekun,Cheng Xiao

Abstract

Bone drilling is a common surgery procedure. The drill bit shape directly affects the drilling force. Excessive drilling force may cause bone damage. In this work, on the premise of analyzing and comparing several finite element method (FEM) simulation results for drill bit of 5 mm in diameter commonly used in medical practice, a combination of drilling speed and feed rates which can minimize the drilling force for drilling parameters is determined. Then, the effects of the drill bit shape parameters including helix angle, point angle and edge radius on the drilling force are simulated by using the obtained drilling parameters, and after validation the FEM analysis results show that their variation trend is the same as the experimental one. Then, the optimum bit structure parameters are obtained through the following research: (1) the prediction model of the relationship between drill edge parameters and drilling force is established based on the result of FEM of the drilling process; (2) A particle swarm optimization algorithm is used to obtain the optimal matching parameters of the bit structure; (3) The priority order of the influence of the parameters of the bit on the drilling force is analyzed. The results show that the order of the influence is: the edge radius is the largest, the point angle is the second, and the helix angle is the smallest. The optimum combination of bit structure is that point angle, helix angle and edge radius are 95°, 35°, and 0.02 mm, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Precision Implant Cavity Fabrication Using Femtosecond Lasers;Photobiomodulation, Photomedicine, and Laser Surgery;2024-08-01

2. Texturing on Drill Tool Flank Surface for Force Reduction in Surgical Drilling Procedure;Lecture Notes in Mechanical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3