Cloud Gaming Video Coding Optimization Based on Camera Motion-Guided Reference Frame Enhancement

Author:

Wang Yifan,Wang Hao,Wang Kaijie,Zhang Wei

Abstract

Recent years have witnessed tremendous advances in clouding gaming. To alleviate the bandwidth pressure due to transmissions of high-quality cloud gaming videos, this paper optimized existing video codecs with deep learning networks to reduce the bitrate consumption of cloud gaming videos. Specifically, a camera motion-guided network, i.e., CMGNet, was proposed for the reference frame enhancement, leveraging the camera motion information of cloud gaming videos and the reconstructed frames in the reference frame list. The obtained high-quality reference frame was then added to the reference frame list to improve the compression efficiency. The decoder side performs the same operation to generate the reconstructed frames using the updated reference frame list. In the CMGNet, camera motions were used as guidance to estimate the frame motion and weight masks to achieve more accurate frame alignment and fusion, respectively. As a result, the quality of the reference frame was significantly enhanced and thus being more suitable as a prediction candidate for the target frame. Experimental results demonstrate the effectiveness of the proposed algorithm, which achieves 4.91% BD-rate reduction on average. Moreover, a cloud gaming video dataset with camera motion data was made available to promote research on game video compression.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference60 articles.

1. A Survey on Cloud Gaming: Future of Computer Games

2. DeepGame: Efficient Video Encoding for Cloud Gaming;Mossad;Proceedings of the Proceedings of the 29th ACM International Conference on Multimedia,2021

3. A low latency cloud gaming system using edge preserved image homography;Xu;Proceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME),2014

4. Generative adversarial network-based frame extrapolation for video coding;Lin;Proceedings of the 2018 IEEE Visual Communications and Image Processing (VCIP),2018

5. Enhanced ctu-level inter prediction with deep frame rate up-conversion for high efficiency video coding;Zhao;Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP),2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3