Coordinated Multi-Platooning Planning for Resolving Sudden Congestion on Multi-Lane Freeways

Author:

Lin Jia-YouORCID,Tsai Chia-Che,Nguyen Van-LinhORCID,Hwang Ren-HungORCID

Abstract

Resolving traffic congestion caused by sudden events (e.g., an accident, lane closed due to construction) on the freeway has always been a problem that is challenging to address perfectly. The congestion resolution can take hours if the congestion is severe, and the vehicles must voluntarily line up to exit the congestion spots. Most state-of-the-art traffic scheduling schemes often rely on traffic signal controllers to mitigate traffic congestion in fixed areas (e.g., intersection, blocked areas). Unlike the existing studies, in this work, we introduce a novel decentralized coordinated platooning planning method, namely Coordinated Platooning Planning (CPP), for quickly resolving temporary traffic congestion in any place on multi-lane freeways heuristically. First, based on warning notifications about traffic congestion, we propose a maneuver control protocol that enables the vehicles to negotiate with surrounding vehicles to determine a consensus plan for forming platoons (who is platoon leader, the value of the distance gap, vehicle velocity, platoon size) in sequential areas. After creating the platoons, each platoon leader commands their platoon members through the maneuver protocol to urge the vehicles to move close to or merge into the same lane. Finally, the chains of platooning vehicles can safely exit the congestion using scheduled orders. The simulation results demonstrate that the proposed heuristic approach can reduce up to 22% of the delay for the last few vehicles driving through the congestion area in typical traffic density cases with the best platoon size configuration, which is a significant enhancement compared to the existing schemes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3