Synthesis of Nitrogen-Doped Graphene Quantum Dots from Sucrose Carbonization

Author:

Rocha Ana Paula de Mello,Alayo Marco IsaíasORCID,da Silva Davinson MarianoORCID

Abstract

The synthesis of carbon-based quantum dots has been widely explored in the literature in recent years. However, despite the fact that synthesis processes to obtain highly efficient carbon quantum dots (CQDs) and graphene quantum dots (GQDs) with redshifted photoluminescence (PL) have been improved, few works have exploited sucrose in the synthesis of GQDs with high PL efficiency. In this work, sucrose, which is a widely available non-toxic saccharide, was used as a precursor of GQDs. Initially, sucrose was carbonized in sulfuric acid, and thereafter, the material obtained was treated in dimethyl sulfoxide (DMSO). Nitrogen doping was also performed in this work through an additional step involving the treatment of carbonized sucrose in nitric acid reflux. Nitrogen-doped GQDs (N-GQDs) showed tunable PL dependent on the excitation wavelength. It was also verified that the intensity of the emission in the red region was much higher in the N-GQDs in comparison with that in undoped GQDs. X-Ray Diffraction, Raman, FTIR, TEM, and AFM analyzes were also performed to obtain greater structural details of the obtained GQDs.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3