Multi-Level Control and Utilization of Stormwater Runoff

Author:

Zuo Yuhang,Luo Hui,Song Mingzhi,He BaojieORCID,Cai Bingxin,Zhang Wenhao,Yang Mingyu

Abstract

This study proposes the technology of “runoff storage and seepage utilization” for achieving purification of road rainfall–runoff and presents a multi-level series purification system (PBT-GR) comprising porous asphalt pavement (PAP), a bioretention system (BS), a storage tank (T) and a hydroponic green roof (GR). The operation parameters of each component unit were optimized and the contribution of each unit to pollution was analyzed. The results showed that under typical simulated rainfall, the suspended solids (SS), total nitrogen (TN), total phosphorus (TP), Pb, Zn and Cu removal rates by filtration and interception of porous pavement were 62.26 ± 3.19%, 16.29 ± 1.74%, 29.27 ± 1.37%, 37.61 ± 2.58%, 35.57 ± 4.64% and 31.17 ± 3.27%, respectively. The average concentrations of SS, TN, TP, Pb, Zn and Cu in the effluent of the PBT-GR system were 14.70 ± 2.21 mg/L, 1.52 ± 0.24 mg/L, 0.14 ± 0.04 mg/L, 0.09 ± 0.04 mg/L, 0.11 ± 0.03 mg/L and 0.04 ± 0.01mg/L, respectively, which met the water quality standards recommended in the Chinese guidelines and showed a high adaptability to pollution load. The contents of pesticide residues and heavy metals in cultivated vegetables met the national standards. The period required to recoup the investment in the system was approximately 3 years, indicating its good economic feasibility. The present study can provide a valuable reference of the construction of an efficient, low consumption and sustainable urban stormwater treatment system and can contribute to the improvement in the quality of the urban water environment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3