Minimizing Maximum Feature Space Deviation for Visible-Infrared Person Re-Identification

Author:

Wu Zhixiong,Wen Tingxi

Abstract

Visible-infrared person re-identification (VIPR) has great potential for intelligent video surveillance systems at night, but it is challenging due to the huge modal gap between visible and infrared modalities. For that, this paper proposes a minimizing maximum feature space deviation (MMFSD) method for VIPR. First, this paper calculates visible and infrared feature centers of each identity. Second, this paper defines feature space deviations based on these feature centers to measure the modal gap between visible and infrared modalities. Third, this paper minimizes the maximum feature space deviation to significantly reduce the modal gap between visible and infrared modalities. Experimental results show the superiority of the proposed method, e.g., on the RegDB dataset, the rank-1 accuracy reaches 92.19%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-identification;Ye,2020

2. Hierarchical Discriminative Learning for Visible Thermal Person Re-Identification;Ye;Proceedings of the AAAI Conference on Artificial Intelligence,2019

3. Visible Thermal Person Re-Identification via Dual-Constrained Top-Ranking;Ye;Proceedings of the International Joint Conference on Artificial Intelligence,2018

4. RGB-Infrared Person Re-identification via Image Modality Conversion;Dai;Proceedings of the International Conference on Pattern Recognition,2021

5. Parameter Sharing Exploration and Hetero-center Triplet Loss for Visible-Thermal Person Re-Identification;Liu;IEEE Trans. Multimed.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3