Abstract
In recent years, a number of wearable approaches have been introduced for objective monitoring of cigarette smoking based on monitoring of hand gestures, breathing or cigarette lighting events. However, non-reactive, objective and accurate measurement of everyday cigarette consumption in the wild remains a challenge. This study utilizes a wearable sensor system (Personal Automatic Cigarette Tracker 2.0, PACT2.0) and proposes a method that integrates information from an instrumented lighter and a 6-axis Inertial Measurement Unit (IMU) on the wrist for accurate detection of smoking events. The PACT2.0 was utilized in a study of 35 moderate to heavy smokers in both controlled (1.5–2 h) and unconstrained free-living conditions (~24 h). The collected dataset contained approximately 871 h of IMU data, 463 lighting events, and 443 cigarettes. The proposed method identified smoking events from the cigarette lighter data and estimated puff counts by detecting hand-to-mouth gestures (HMG) in the IMU data by a Support Vector Machine (SVM) classifier. The leave-one-subject-out (LOSO) cross-validation on the data from the controlled portion of the study achieved high accuracy and F1-score of smoking event detection and estimation of puff counts (97%/98% and 93%/86%, respectively). The results of validation in free-living demonstrate 84.9% agreement with self-reported cigarettes. These results suggest that an IMU and instrumented lighter may potentially be used in studies of smoking behavior under natural conditions.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献