Attribution Analysis of Runoff Variation in the Second Songhua River Based on the Non-Steady Budyko Framework

Author:

Li Zan12,Wu Yao2,Li Ji3,Qi Peng2,Sun Jiaxin12,Sun Yingna1

Affiliation:

1. Institute of Water Conservancy and Electric Power, Heilongjiang University, Harbin 150080, China

2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

3. Chang Guang Satellite Technology Co., Ltd., Changchun 130000, China

Abstract

Understanding the role of climate change and catchment characteristics in hydrological activity is important for the efficient use of water resources. In this study, a Budyko framework suitable for non-steady conditions was used to assess the impacts of climate change and catchment characteristics on the long-term changes in annual and seasonal runoff in the Second Songhua River (SSR) basin during the last 30 years. Based on the analysis of the hydro-meteorological series of the SSR, the runoff in the SSR basin showed a non-significant increasing trend. The hydro-meteorological elements changed abruptly in 2009, and the study period was divided into a baseline period (1989–2009) and a disturbed period (2010–2018). Runoff increased during the disturbed period compared to the baseline period, with a significant increase in spring runoff in the upstream area and summer runoff in the downstream area. The attribution analysis results indicated that the annual runoff was mainly affected by climatic factors, and 66.8–99.6% of yearly runoff changes were caused by climate change. Catchment characteristics had little effect on yearly runoff but significantly affected seasonal runoff. The catchment characteristics affecting runoff were mainly increased water withdrawal, changes in snowfall, degradation of permafrost, and changes in reservoir operation. This study provides a basis for further understanding the intra-annual runoff variability for SSR and other similar rivers.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Jilin Province Science and Technology Development Plan

Heilongjiang University postgraduate innovative Research Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3