Affiliation:
1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
2. Shaanxi Coal and Chemical Technology Institute Co., Ltd., Xi’an 710065, China
3. Laboratory of Engineering Geology and Hydrogeology, Department of Geological Sciences, School of Mining and Metallurgical Engineering, National Technical University of Athens, 15780 Athens, Greece
Abstract
Water inrush disasters in mining areas are one of the most serious geological disasters in coal mining. The purpose of this study is to study the establishment of a water chemical database and water inrush source discrimination model in the Weibei coalfield to provide the basis for regional hydrogeological conditions for future mining under pressure in the Weibei area, as well as a basis for the rapid identification of water inrush sources in the Weibei coalfield. In this paper, a conventional hydrochemical and trace element discrimination model for mine water inrush was established, and the hydrochemical characteristic files of the entire mining area were integrated. Based on 10 indicators, three hydrochemical discrimination models of rock stratum aquifers were established. Through the Mahalanobis distance test, it was found that the six selected variables, K+ + Na+, Mg2+, NH4+, Cl−, SO42−, and pH, have significant discrimination ability and good effect and can effectively distinguish the three main water inrush aquifers in the Weibei mining area. Then, the clustering stepwise discriminant analysis method was used to select 24 water samples and 14 trace element indicators from the conventional water chemistry test results. Based on principal component analysis, a principal component analysis discriminant model of trace elements was established for the four main aquifers. The accuracy and misjudgment rate of the Bayes multi-class linear discriminant using conventional ions as explanatory variables were 64.3% and 35.7%, respectively, showing a poor discriminant effect. On this basis, seven characteristic trace elements were analyzed according to Bayes multi-class linear discriminant analysis, the mutual influence and restriction relationship regarding the migration of these seven trace elements in the groundwater system of the mining area was determined, and the modified Bayes multi-class linear discriminant analysis model of trace elements for the water inrush source was established, which was more accurate than the conventional ion Bayes multi-class linear discriminant analysis model. The accuracy rate reached 92.9%. This research is of great significance for mine water-source identification and water-inrush prevention guidance.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献