An Unmanned Aerial Vehicle Indoor Low-Computation Navigation Method Based on Vision and Deep Learning

Author:

Hsieh Tzu-Ling1,Jhan Zih-Syuan1,Yeh Nai-Jui1,Chen Chang-Yu1,Chuang Cheng-Ta1

Affiliation:

1. Department of Intelligent Automation Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

Recently, unmanned aerial vehicles (UAVs) have found extensive indoor applications. In numerous indoor UAV scenarios, navigation paths remain consistent. While many indoor positioning methods offer excellent precision, they often demand significant costs and computational resources. Furthermore, such high functionality can be superfluous for these applications. To address this issue, we present a cost-effective, computationally efficient solution for path following and obstacle avoidance. The UAV employs a down-looking camera for path following and a front-looking camera for obstacle avoidance. This paper refines the carrot casing algorithm for line tracking and introduces our novel line-fitting path-following algorithm (LFPF). Both algorithms competently manage indoor path-following tasks within a constrained field of view. However, the LFPF is superior at adapting to light variations and maintaining a consistent flight speed, maintaining its error margin within ±40 cm in real flight scenarios. For obstacle avoidance, we utilize depth images and YOLOv4-tiny to detect obstacles, subsequently implementing suitable avoidance strategies based on the type and proximity of these obstacles. Real-world tests indicated minimal computational demands, enabling the Nvidia Jetson Nano, an entry-level computing platform, to operate at 23 FPS.

Funder

MOST Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3