Affiliation:
1. Department of Intelligent Automation Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
Abstract
Recently, unmanned aerial vehicles (UAVs) have found extensive indoor applications. In numerous indoor UAV scenarios, navigation paths remain consistent. While many indoor positioning methods offer excellent precision, they often demand significant costs and computational resources. Furthermore, such high functionality can be superfluous for these applications. To address this issue, we present a cost-effective, computationally efficient solution for path following and obstacle avoidance. The UAV employs a down-looking camera for path following and a front-looking camera for obstacle avoidance. This paper refines the carrot casing algorithm for line tracking and introduces our novel line-fitting path-following algorithm (LFPF). Both algorithms competently manage indoor path-following tasks within a constrained field of view. However, the LFPF is superior at adapting to light variations and maintaining a consistent flight speed, maintaining its error margin within ±40 cm in real flight scenarios. For obstacle avoidance, we utilize depth images and YOLOv4-tiny to detect obstacles, subsequently implementing suitable avoidance strategies based on the type and proximity of these obstacles. Real-world tests indicated minimal computational demands, enabling the Nvidia Jetson Nano, an entry-level computing platform, to operate at 23 FPS.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献