Abstract
This study assesses mainly the uncertainty of the mean annual runoff (MAR) for quaternary catchments (QCs) considered as metastable nonextensive systems (from Tsalllis entropy) in the Middle Vaal catchment. The study is applied to the surface water resources (WR) of the South Africa 1990 (WR90), 2005 (WR2005) and 2012 (WR2012) data sets. The q-information index (from the Tsalllis entropy) is used here as a deviation indicator for the spatial evolution of uncertainty for the different QCs, using the Shannon entropy as a baseline. It enables the determination of a (virtual) convergence point, zone of positive and negative uncertainty deviation, zone of null deviation and chaotic zone for each data set. Such a determination is not possible on the basis of the Shannon entropy alone as a measure for the MAR uncertainty of QCs, i.e., when they are viewed as extensive systems. Finally, the spatial distributions for the zones of the q-uncertainty deviation (gain or loss in information) of the MAR are derived and lead to iso q-uncertainty deviation maps.
Subject
General Physics and Astronomy