Analysis of the Impact of Cooling Lubricants on the Tensile Properties of FDM 3D Printed PLA and PLA+CF Materials

Author:

Hozdić Elvis1ORCID,Hasanagić Redžo2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Novo Mesto, Na Loko 2, 8000 Novo Mesto, Slovenia

2. Faculty of Technical Engineering, University of Bihać, Irfana Ljubijankića bb, 77000 Bihać, Bosnia and Herzegovina

Abstract

This study investigates the impact of infill density on the mechanical properties of fused deposition modeling (FDM) 3D-printed polylactic acid (PLA) and PLA reinforced with carbon fiber (PLA+CF) specimens, which hold industrial significance due to their applications in industries where mechanical robustness and durability are critical. Exposure to cooling lubricants is particularly relevant for environments where these materials are frequently subjected to cooling fluids, such as manufacturing plants and machine shops. This research aims to explore insights into the mechanical robustness and durability of these materials under realistic operating conditions, including prolonged exposure to cooling lubricants. Tensile tests were performed on PLA and PLA+CF specimens printed with varying infill densities (40%, 60%, 80%, and 100%). The specimens underwent tensile testing before and after exposure to cooling lubricants for 7 and 30 days, respectively. Mechanical properties such as tensile strength, maximum force, strain, and Young’s modulus were measured to evaluate the effects of infill density and lubricant exposure. Higher infill densities significantly increased tensile strength and maximum force for both PLA and PLA+CF specimens. PLA specimens showed an increase in tensile strength from 22.49 MPa at 40% infill density to 45.00 MPa at 100% infill density, representing a 100.09% enhancement. PLA+CF specimens exhibited an increase from 23.09 MPa to 42.54 MPa, marking an 84.27% improvement. After 30 days of lubricant exposure, the tensile strength of PLA specimens decreased by 15.56%, while PLA+CF specimens experienced an 18.60% reduction. Strain values exhibited minor fluctuations, indicating stable elasticity, and Young’s modulus improved significantly with higher infill densities, suggesting enhanced material stiffness. Increasing the infill density of FDM 3D-printed PLA and PLA+CF specimens significantly enhance their mechanical properties, even under prolonged exposure to cooling lubricants. These findings have significant implications for industrial applications, indicating that optimizing infill density can enhance the durability and performance of 3D-printed components. This study offers a robust foundation for further research and practical applications, highlighting the critical role of infill density in enhancing structural integrity and load-bearing capacity.

Funder

University of Novo mesto, Faculty of Mechanical Engineering, Novo mesto, Slovenia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3