Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials

Author:

Li Zhipeng1,Zhang Luxia1,Han Xiangyu1,An Qinchen1,Chen Mengying1,Song Zichang1,Dong Linyi1,Wang Xianhua1ORCID,Yu Yang1

Affiliation:

1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China

Abstract

Sample pretreatment is a key step for qualitative and quantitative analysis of trace substances in complex samples. Cis-dihydroxyl (cis-diol) group-containing substances exist widely in biological samples and can be selectively bound by boronate affinity adsorbents. Based on this, in this article, we proposed a simple method for the preparation of novel spherical three-dimensionally ordered macropore (3DOM) materials based on a combination of the boronate affinity technique and colloidal crystal template method. The prepared 3DOM materials were characterized using Fourier transform–infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis, and results showed that they possessed the characteristics of a high specific surface area, high porosity, and more boronic acid recognition sites. The adsorption performance evaluation results showed that the maximum adsorption capacity of the boron affinity 3DOMs on ovalbumin (OVA) could reach to 438.79 mg/g. Kinetic and isothermal adsorption experiments indicated that the boronate affinity 3DOM material exhibited a high affinity and selectivity towards OVA and adenosine. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis of the proteins in egg whites was conducted and proved that the glycoprotein in the egg whites could be separated and enriched with a good performance. Therefore, a novel boronate affinity 3DOM material a with highly ordered and interconnected pore structure was prepared and could be applied in the separation and enrichment of molecules with cis-diol groups from complex samples with a good selectivity, efficiency, and high throughput.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3