Mechanochemical Upcycling of Waste Polypropylene into Warm-Mix Modifier for Asphalt Pavement Incorporating Recycled Concrete Aggregates

Author:

Hu Jingxuan12,Jiang Xueliang1,Chu Yaming3,Xu Song4ORCID,Xu Xiong56ORCID

Affiliation:

1. School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China

2. School of Chemical and Materials Engineering, College of Post and Telecommunication of WIT, Wuhan 430073, China

3. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

4. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China

5. Hubei Provincial Engineering Research Center for Green Civil Engineering Materials and Structures, Wuhan Institute of Technology, Wuhan 430073, China

6. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China

Abstract

To solve the problems on resource utilization and environmental pollution of waste concrete and waste polypropylene (PP) plastics, the recycling of them into asphalt pavement is a feasible approach. Considering the high melting temperature of waste PP, this study adopted a thermal-and-mechanochemical method to convert waste PP into high-performance warm-mix asphalt modifiers (PPMs) through the hybrid use of dicumyl peroxide (DCP), maleic anhydride (MAH), and epoxidized soybean oil (ESO) for preparing an asphalt mixture (RCAAM) containing recycled concrete aggregate (RCA). For the prepared RCAAM containing PPMs, the mixing temperature was about 30 °C lower than that of the hot-mix RCAAM containing untreated PP. Further, the high-temperature property, low-temperature crack resistance, moisture-induced damage resistance, and fatigue resistance of the RCAAM were characterized. The results indicated that the maximum flexural strain of the RCAAM increased by 7.8~21.4% after using PPMs, while the sectional fractures of the asphalt binder were reduced after damaging at low temperature. The use of ESO in PPMs can promote the cohesion enhancement of the asphalt binder and also improve the high-temperature deformation resistance and fatigue performance of the RCAAM. Notably, the warm-mix epoxidized PPMA mixture worked better close to the hot-mix untreated PPMA mixture, even after the mixing temperature was reduced by 30 °C.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3