Prediction Distribution Model of Moisture Content in Laminated Wood Components

Author:

Tian Panpan1,Han Jianhong2,Guo Shangjie1,Di Jun3,Han Xia1

Affiliation:

1. School of Civil Engineering and Architecture, Xinjiang University, Urumqi 830047, China

2. School of Civil Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China

3. Xinjiang Architectural Design and Research Institute Co., Ltd., Urumqi 830002, China

Abstract

Shrinkage cracks are some of the most common defects in timber structures obtained from woods with an uneven distribution of moisture content and are subject to external dynamic environmental changes. To accurately predict the changes in the moisture content of wood components at any time and position, this study first applied the principles of food drying and established a moisture field model for laminated wood based on the analogy between heat and humidity transfer. A model for predicting the moisture content of wood that considers time and spatial distribution was then proposed. Second, by collecting relevant experimental data and establishing a finite element analysis model, three moisture absorption conditions (0–9.95%, 0–13.65%, and 0–17.91%) and four desorption conditions (34–5.5%, 28–8.3%, 31–11.8%, and 25.5–15.9%) were analyzed. In the moisture absorption comparison, the time needed to reach 95% equilibrium moisture content was 2.43 days, 4.07 days, and 6.32 days. The rate at which the internal components reached equilibrium moisture content exceeded 10 days. The temporal and spatial distribution of wood moisture content revealed the correctness of the proposed wood moisture field model. Finally, the moisture content prediction model was applied in the order of characteristic equation solutions, moisture content gradient difference, and laminated wood size. The results revealed that the established humidity field model can predict the wood moisture content and how it changes over time and in space. Notably, 1–2 orders for the solution of the characteristic equation are recommended when applying the prediction model. The greater the difference in moisture content, the faster the equilibrium moisture content is reached. The moisture content varies greatly based on the component size and position. Notably, the influence of moisture gradient and wood size on the average wood moisture content cannot be ignored.

Funder

Natural Science Foundation of the Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3