3-Pentadecylphenol (PDP) as a Novel Compatibilizer for Simultaneous Toughened and Reinforced PA10,12 Composites

Author:

Jin Yuwei123,Zhang Qi4,Zhai Xiaokun1,Teng Hao1,Du Youmei1,Lu Jing1,Farzana Sumaiya5,Lee Patrick C.5ORCID,Zhang Ruiyan4,Luo Faliang12

Affiliation:

1. State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China

2. School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

3. Chuanghe New Material Technology Jiangsu Co., Ltd., Yangzhou 225000, China

4. Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China

5. Multifunctional Composites Manufacturing Laboratory (MCML), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada

Abstract

The utilization of polyamide 10,12 (PA10,12) composites in various industries has been limited constrained by their inherent low toughness, making it a challenge to achieve a balance between toughness and structural integrity through conventional elastomer addition strategies. Herein, we introduce a straightforward method for the concurrent toughening and reinforcement of PA10,12 composites. This is accomplished by blending polyolefin elastomer (POE) and 3-pentadecylphenol (PDP) with the PA10,12 matrix. The incorporation of 5 wt% PDP effectively blurred the PA10,12/POE interface due to PDP’s role as a compatibilizer. This phenomenon is attributed to the formation of intermolecular hydrogen bonds, as evidenced by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Further investigation, using differential scanning calorimetry (DSC), elucidated the crystallization thermodynamics and kinetics of the resulting binary PA10,12/POE and ternary PA10,12/POE/PDP composites. Notably, the crystallization temperature (Tc) was observed to decrease from 163.1 °C in the binary composite to 161.5 °C upon the addition of PDP. Increasing the PDP content to 10% led to a further reduction in Tc to 159.5 °C due to PDP’s capacity to slow down crystallization. Consequently, the ternary composite of PA10,12/POE/PDP (92/3/5 wt%) demonstrated a synergistic improvement in mechanical properties, with an elongation at break of 579% and a notch impact strength of 61.54 kJ/m2. This represents an approximately eightfold increase over the impact strength of unmodified PA10,12. Therefore, our work provides the potential of PDP as a compatibilizer to develop nylon composites with enhanced stiffness and toughness.

Funder

Natural Science Foundation of China

Natural Science Foundation of Ningxia

Ningxia Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3