Affiliation:
1. School of Textile Garment & Design, Changshu Institute of Technology, Changshu 215500, China
2. College of Textile and Clothing, Suzhou University, Suzhou 215031, China
Abstract
Using zinc oxide (ZnO), tourmaline (TM), and polyethylene terephthalate (PET) as main raw materials, a novel ZnO/TM/PET negative ion functional fiber was created. The rheological properties of a ZnO/TM/PET masterbatch were investigated; the morphology, XRD, and FT-IR of the fibers were observed; and the mechanical properties, thermal properties, and negative ion release properties of the new fiber were tested. The results showed that the average particle size of the ZnO/TM composite is nearly 365 nm, with an increase in negative ion emission efficiency by nearly 50% compared to the original TM. The apparent viscosity of fiber masterbatch decreases with the increase in the addition of the ZnO/TM composite, and the rheological properties of the PET fiber masterbatch are not significantly effected, still showing shear thinning characteristics when the amount of addition reaches 10%. The ZnO/TM composite disperses well in the interior and surface of the ZnO/TM/PET fiber matrix. The prepared ZnO/TM/PET fiber has excellent properties, such as fineness of 1.54 dtex, glass transition temperature of 122.4 °C, fracture strength of 3.31 cN/dtex, and negative ion release of 1640/cm3, which shows great industrialization potential.
Funder
“14th Five-Year Plan” key discipline construction project of Jiangsu Province