Self-Floating Polydopamine/Polystyrene Composite Porous Structure via a NaCl Template Method for Solar-Driven Interfacial Water Evaporation

Author:

Wang Xiao12,Li Zhen3,Wu Xiaojing1,Liu Bingjie4,Tian Tian2ORCID,Ding Yi23,Zhang Haibo2,Li Yuanli2,Liu Ye2,Dai Chunai2

Affiliation:

1. School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen 518055, China

2. School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China

3. Advanced Materials and Energy Center, Academy of Aerospace Science and Innovation, Beijing 100088, China

4. Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China

Abstract

Solar energy, as a clean and renewable energy source, holds significant promise for addressing water shortages. Utilizing solar energy for water evaporation is seen as an effective solution in this regard. While many existing interfacial photothermal water evaporation systems rely on nanoparticles or graphene as photothermal or support materials, this study introduced polydopamine (PDA) as a photothermal material due to its environmental friendliness and excellent photon absorption characteristics that closely match the solar spectrum. Polystyrene (PS) was also introduced as a support material for its porous structure and density similar to water, enabling it to float on water. The resulting PS-PDA composite porous structure solar evaporator exhibited a photothermal conversion efficiency comparable to nanoparticles (over 75%), yet with lower production costs and minimal environmental impact. This innovative approach offers a scalable solution for water-scarce regions, providing a cost-effective and efficient means to address water scarcity. The use of PDA and PS in this context highlights the potential for utilizing common materials in novel ways to meet pressing environmental challenges.

Funder

High-Level Talent Initiation Project of Shenzhen Polytechnic University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3