Comparative Study of the Dehydrothermal Crosslinking of Electrospun Collagen Nanofibers: The Effects of Vacuum Conditions and Subsequent Chemical Crosslinking

Author:

Kužma Ján12,Suchý Tomáš12ORCID,Horný Lukáš1ORCID,Šupová Monika2ORCID,Sucharda Zbyněk2

Affiliation:

1. Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, Prague 6, 160 00 Prague, Czech Republic

2. Institute of Rock Structure and Mechanics of The Czech Academy of Sciences, v. v. i., V Holešovičkách 94/41, Prague 8, 182 09 Prague, Czech Republic

Abstract

Collagen nanofibrous materials have become integral to tissue engineering due to their exceptional properties and biocompatibility. Dehydrothermal crosslinking (DHT) enhances stability and maintains structural integrity without the formation of toxic residues. The study involved the crosslinking of electrospun collagen, applying DHT with access to air and under vacuum conditions. Various DHT exposure times of up to 72 h were applied to examine the time dependance of the DHT process. The DHT crosslinked collagen was subsequently chemically crosslinked using carbodiimides. The material crosslinked in this way evinced elevated Young’s modulus values and ultimate tensile strength values, a lower swelling rate and lower shrinkage ratio during crosslinking, and a higher degree of resistance to degradation than the material crosslinked solely with DHT or carbodiimides. It was shown that the crosslinking mechanism using DHT occupies different binding sites than those using chemical crosslinking. Access to air for 12 h or less did not exert a significant impact on the material properties compared to DHT under vacuum conditions. However, concerning longer exposure times, it was determined that access to air results in the deterioration of the properties of the material and that reactions take place that occupy the free bonding sites, which subsequently reduces the effectiveness of chemical crosslinking using carbodiimides.

Funder

Czech Technical University in Prague

Ministry of Health of the Czech Republic

long-term conceptual development research organization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3