Research on Acid Aging and Damage Pattern Recognition of Glass Fiber-Reinforced Plastic Oil and Gas Gathering Pipelines Based on Acoustic Emission

Author:

Bi Haisheng1ORCID,Zhang Yuhong1,Zhang Chen1,Ma Chunxun1,Li Yuxiang1,Miao Jiaxu2,Wang Guang1,Cheng Haoran34ORCID

Affiliation:

1. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

2. College of Pipeline and Civil Engineering, China University of Petroleum (Huadong), Qingdao 266580, China

3. Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610218, China

4. School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

Pipelines extend thousands of kilometers to transport and distribute oil and gas. Given the challenges often faced with corrosion, fatigue, and other issues in steel pipes, the demand for glass fiber-reinforced plastic (GFRP) pipes is increasing in oil and gas gathering and transmission systems. However, the medium that is transported through these pipelines contains multiple acid gases such as CO2 and H2S, as well as ions including Cl−, Ca2+, Mg2+, SO42−, CO32−, and HCO3−. These substances can cause a series of problems, such as aging, debonding, delamination, and fracture. In this study, a series of aging damage experiments were conducted on V-shaped defect GFRP pipes with depths of 2 mm and 5 mm. The aging and failure of GFRP were studied under the combined effects of external force and acidic solution using acoustic emission (AE) techniques. It was found that the acidic aging solution promoted matrix damage, fiber/matrix desorption, and delamination damage in GFRP pipes over a short period. However, the overall aging effect was relatively weak. Based on the experimental data, the SSA-LSSVM algorithm was proposed and applied to the damage pattern recognition of GFRP. An average recognition rate of up to 90% was achieved, indicating that this method is highly suitable for analyzing AE signals related to GFRP damage.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Opening fund of Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety

Fundamental Research Funds for Central Universities

Young Taishan Scholars Program of Shandong Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3