Electrospun Polylactide—Poly(ε-Caprolactone) Fibers: Structure Characterization and Segmental Dynamic Response

Author:

Karpova Svetlana G.1,Olkhov Anatoly A.12ORCID,Varyan Ivetta A.12,Khan Oksana I.34,Botin Andrey A.5,Naletova Anna V.5,Popov Anatoly A.12,Iordanskii Alexey L.4ORCID

Affiliation:

1. Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia

2. Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia

3. Institute of Biochemical Technology and Nanotechnology, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia

4. N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia

5. Department of Organic Chemistry and Petroleum Chemistry, Gubkin University, 65 Leninsky Prospect Building 1, 119991 Moscow, Russia

Abstract

Electrospun ultrathin fibers based on binary compositions of polylactide (PLA) and poly(ε-caprolactone) (PCL) with the various content from the polymer ratio from 0/100 to 100/0 have been explored. Combining thermal (DSC) and spectropy (ESR) techniques, the effect of biopolymer content on the characteristics of the crystal structure of PLA and PCL and the rotative diffusion of the stable TEMPO radical in the intercrystallite areas of PLA/PCL compositions was shown. It was revealed that after PLA and PCL blending, significant changes in the degree of crystallinity of PLA, PCL segment mobility, sorption of the Tempo probe, as well as its activation energy of rotation in the intercrystalline areas of PLA/PCL fibers, were evaluated. The characteristic region of biopolymers’ composition from 50/50 to 30/70% PLA/PCL blend ratio was found, where the inversion transition of PLA from dispersive medium to dispersive phase where an inversion transition is assumed when the continuous medium of the PLA transforms into a discrete phase. The performed studies made it possible, firstly, to carry out a detailed study of the effect of the system component ratio on the structural and dynamic characteristics of the PLA/PCL film material at the molecular level.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3