Ultrasound-Assisted Extrusion Compounding of Nano Clay/Polypropylene Nano Compounds

Author:

Francucci Gaston1ORCID,Rodriguez Elena1,Rodriguez María Eugenia1ORCID

Affiliation:

1. Eurecat—Centre Tecnològic de Catalunya, Unit of Polymeric and Composites Processes, Av. Universitat Autònoma, 23, 08290 Cerdanyola del Vallès, Spain

Abstract

The incorporation of nanoparticles can significantly enhance the properties of polymers. However, the industrial production of nanocomposites presents a technological challenge in achieving the proper dispersion of nanoparticles within the polymer matrix. In this work, a novel device is presented that can be seamlessly integrated with standard twin-screw extruders, enabling the application of ultrasonic vibration to molten polymeric material. The primary objective of this study is to experimentally validate the effectiveness of this technology in improving the dispersion of nanoparticles. To accomplish this, a comparative analysis was carried out between nanocomposites obtained through conventional compounding extrusion and those processed with the assistance of ultrasonic vibrations. The nanocomposites under investigation consist of a polypropylene (PP) matrix reinforced with nano clays (Cloisite 20A) at a target loading ratio of 5% by weight. To comprehensively evaluate the impact of the ultrasound-assisted compounding, various key properties were assessed, such as the melt flow index (MFI) to characterize the flow behavior, mechanical properties to evaluate the structural performance, oxygen barrier properties to assess potential gas permeability, and microstructure analysis using Scanning Electron Microscopy (SEM) for detailed morphology characterization. The results suggested an improvement in nanoparticle dispersion when using the ultrasound device, particularly when the intensity was adjusted to 60%.

Funder

the European Union’s Horizon 2020 research and innovation program

the Government of Catalonia’s Agency for Business Competitiveness

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3