Adhesion Properties and Stability of Polar Polymers Treated by Air Atmospheric Pressure Plasma

Author:

Ciobanu Roxana1,Mihăilă Ilarion2ORCID,Borcia Cătălin1,Borcia Gabriela1

Affiliation:

1. Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, Alexandru Ioan Cuza University, Blvd. Carol I No. 11, 700506 Iasi, Romania

2. Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Alexandru Ioan Cuza University of Iasi, Blvd. Carol I No. 11, 700506 Iasi, Romania

Abstract

This study continues the discussion on the surface modification of polymers using an atmospheric pressure plasma (APP) reactor in air. These results complement prior research focusing on nonpolar polymers. Polymers, such as polyethylene terephthalate, polyetheretherketone, and polymethyl methacrylate, containing structurally bonded oxygen are studied, representing a range of properties such as oxygen content, crystalline/amorphous structure, polarity, functionality, and aliphatic/aromatic structure. APP induces superior wetting properties on the hydrophilic polymer surfaces with rapid and uniform modification within 0.5 s of exposure. The amorphous structures undergo additional modification for longer exposure. Moreover, the aliphatic chain structures require longer plasma exposure to reach surface modification equilibrium. The polar polymers reach a limit level of modification corresponding to a minimum water contact angle of about 50°. The surface polarity increases on average by a factor of approximately two. The equilibrium values of the adhesion work attained after post-processing recovery fall within a limited range of about 100–120 mJ/m2. The enhancement of surface functionality through the creation of oxidized groups primarily depends on the initial oxygen content and reaches a limit of about 40 at.% oxygen. The surface properties of the treated polar surfaces exhibit good stability, comparable to that of the previously tested nonpolar polymers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3