Raising Two More Fundamental Questions Regarding the Classical Views on the Rheology of Polymer Melts

Author:

Ibar Jean Pierre1

Affiliation:

1. Rheology Department, Polymat Institute, University of the Basque Country (UPV/EHU), 20018 Donostia (St Sebastian), Gipuskoa, Spain

Abstract

The current paradigm of polymer flow assumes that (i) the effect of the molecular weight of the macromolecules, M, and of the temperature, T, on the expression of the viscosity of polymer melts separate; (ii) the molecular weight for entanglement, Mc, is independent of T; and (iii) the determination of Mc by the break in the log viscosity curve against log M unequivocally differentiates un-entangled melts from entangled melts. We use reliable rheological data on monodispersed polystyrene samples from very low molecular weight (M/Mc = 0.015) to relatively high molecular weight (M/Mc = 34) to test the separation of M and T in the expression of the viscosity; we reveal that an overall illusion of the validity of the separation of T and M is mathematically comprehensible, especially at high temperature and for M > 2Mc, but that, strictly speaking, the separation of M and T is not valid, except for certain periodic values of M equal to Mc, 2Mc, 4Mc, 8Mc, 16Mc, etc. (period doubling) organized around a “pole reference” value MR = 4Mc. We also reveal, for M < Mc, the existence of a lower molecular weight limit, M’c = Mc/8 for the onset of the macromolecular behavior (macro-coil). The discrete and periodic values of M that validate the separation of the effect of M and T on the viscosity generate the fragmentation of the molecular range into three rheological ranges. Likewise, we show that the effect of temperature is also fragmented into three rheological ranges for T > Tg: Tg < T< (Tg + 23°), (Tg + 23°) < T < TLL and T > TLL’ where TLL is the liquid-liquid temperature. Our conclusion is that the classical formulation of the viscosity of polymer melts is so overly simplified that it is missing important experimental facts, such as period doubling for the separation of T and M, TLL, M’c, and Mc, resulting in its inability to understand the true nature of entanglements. We present in the discussion of the paper the alternative approach to the viscoelastic behavior, “the duality and cross-duality” of the Dual-conformers, showing how this model formalism was used to test mathematically and invalidate the separation of T and M in the classical formulation of viscosity.

Publisher

MDPI AG

Reference19 articles.

1. Graessley, W.W. (1974). The Entanglement Concept in Polymer Rheology, Springer. Advances in Polymer Science.

2. Pierson, J.F. (1968). CRM Strasbourg, Numero D’Ordre at Centre Documentation CNRS, Rue Boyer, Paris, France: AO2106. [Ph.D. Thesis, CNRS].

3. Susuki, R. (1970). CRM Strasbourg, Numero D’Ordre at Centre Documentation CNRS, Rue Boyer, Paris, France: T32307. [Ph.D. Thesis, CNRS].

4. Ibar, J.P. (2023). The Challenges Facing the Current Paradigm Describing Viscoelastic Interactions in Polymer Melts. Polymers, 15.

5. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers;Rouse;J. Chem. Phys.,1953

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3