An Insight into the Mechanical Properties of Unidirectional C/C Composites Considering the Effect of Pore Microstructures via Numerical Calculation

Author:

Ge Jian1ORCID,Chao Xujiang1ORCID,Tian Wenlong1,Li Weiqi1,Qi Lehua1

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Pores are common defects generated during fabrication, which restrict the application of carbon/carbon (C/C) composites. To quantitatively understand the effects of pores on mechanical strength, this paper proposes a representative volume element model of unidirectional (UD) C/C composites based on the finite element method. The Hashin criterion and exponential degraded rule are used as the failure initiation and evolution of pyrolytic carbon matrices, respectively. Interfacial zones are characterized using the cohesive constitutive. At the same time, periodic boundary conditions are employed to study transverse tensile, compressive, and shear deformations of UD C/C composites. Predicted results are compared with the experimental results, which shows that the proposed model can effectively simulate the transverse mechanical behaviors of UD C/C composites. Based on this model, the effects of microstructural parameters including porosity, pore locations, the distance between two pores, pore clustering, and pore shapes on the mechanical strength are investigated. The results show that porosity markedly reduces the strength as porosity increases. When the porosity increases from 4.59% to 12.5%, the transverse tensile, compressive, and shear strengths decrease by 35.91%, 37.52%, and 30.76%, respectively. Pore locations, the distance between two pores, and pore clustering have little effect on the shear strength of UD C/C composites. For pore shapes, irregular pores more easily lead to stress concentration and matrix failure, which greatly depresses the bearing capacity of UD C/C composites.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3