Tailoring Hydrogel Sheet Properties through Co-Monomer Selection in AMPS Copolymer Macromers

Author:

Daengmankhong Jinjutha1ORCID,Pinthong Thanyaporn1,Promkrainit Sudarat1,Yooyod Maytinee1,Mahasaranon Sararat12,Punyodom Winita34,Ross Sukunya12ORCID,Jongjitwimol Jirapas25ORCID,Tighe Brian J.6,Derry Matthew J.6ORCID,Topham Paul D.6ORCID,Ross Gareth M.12ORCID

Affiliation:

1. Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

2. Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

3. Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

4. Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

5. Biomedical Sciences Program, Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand

6. Aston Institute for Membrane Excellence, Aston University, Birmingham B4 7ET, UK

Abstract

This study investigates hydrogels based on 2-Acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) copolymers, incorporating N-hydroxyethyl acrylamide (HEA) and 3-sulfopropyl acrylate potassium salt (SPA). The addition of HEA and SPA is designed to fine-tune the hydrogels’ water absorption and mechanical properties, ultimately enhancing their characteristics and expanding their potential for biomedical applications. A copolymer of AMPS, 2-carboxyethyl acrylate (CEA) combined with methacrylic acid (MAA) as poly(AMPS-stat-CEA-stat-MAA, PACM), was preliminarily synthesized. CEA and MAA were modified with allyl glycidyl ether (AGE) through ring-opening, yielding macromers with pendant allyl groups (PACM-AGE). Copolymers poly(AMPS-stat-HEA-stat-CEA-stat-MAA) (PAHCM) and poly(AMPS-stat-SPA-stat-CEA-stat-MAA) (PASCM) were also synthesized and modified with AGE to produce PAHCM-AGE and PASCM-AGE macromers. These copolymers and macromers were characterized by 1H NMR, FT-IR, and GPC, confirming successful synthesis and functionalization. The macromers were then photocrosslinked into hydrogels and evaluated for swelling, water content, and mechanical properties. The results revealed that the PASCM-AGE hydrogels exhibited superior swelling ratios and water retention, achieving equilibrium water content (~92%) within 30 min. While the mechanical properties of HEA and SPA containing hydrogels show significant differences compared to PACM-AGE hydrogel (tensile strength 2.5 MPa, elongation 47%), HEA containing PAHCM-AGE has a higher tensile strength (5.8 MPa) but lower elongation (19%). In contrast, SPA in the PASCM-AGE hydrogels led to both higher tensile strength (3.7 MPa) and greater elongation (92%), allowing for a broader range of hydrogel properties. An initial study on drug delivery behavior was conducted using PACM-AGE hydrogels loaded with photosensitizers, showing effective absorption, release, and antibacterial activity under light exposure. These AMPS-based macromers with HEA and SPA modifications demonstrate enhanced properties, making them promising for wound management and drug delivery applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3