Synergistic Enhancement of the Friction and Wear Performance for UHMWPE Composites under Different Aging Times

Author:

Liu Yingliang1,Han Yunxiang1,Yuan Lin1,Zhen Jinming1ORCID,Jia Zhengfeng1ORCID,Zhang Ran1

Affiliation:

1. College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China

Abstract

With the rapid development of the pipeline transportation and exploitation of mineral resources, there is an urgent requirement for high-performance polymer matrix composites with low friction and wear, especially under oxidative and prolonged working conditions. In this work, ultra-high-molecular-weight polyethylene (UHMWPE) matrix composites with the addition of carbon fibers (CFs), TiC, and MoS2 were prepared by the hot press sintering method. The influence of thermal oxygen aging time (90 °C, 0 h–64 h) on their mechanical and frictional performance was investigated. The results showed that TiC ceramic particles can increase wear resistance, especially by aging times up to 32 and 64 h. The wear mechanisms were analyzed based on the results of SEM images, EDS, and Raman spectra. The knowledge obtained herein will facilitate the design of long-service-life polymer matrix composites with promising low friction and wear performances.

Funder

National Natural Science Foundation of China

Guangyue Young Scholar Innovation Team of Liaocheng University

Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Improvement Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3