Affiliation:
1. College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
Abstract
With the rapid development of the pipeline transportation and exploitation of mineral resources, there is an urgent requirement for high-performance polymer matrix composites with low friction and wear, especially under oxidative and prolonged working conditions. In this work, ultra-high-molecular-weight polyethylene (UHMWPE) matrix composites with the addition of carbon fibers (CFs), TiC, and MoS2 were prepared by the hot press sintering method. The influence of thermal oxygen aging time (90 °C, 0 h–64 h) on their mechanical and frictional performance was investigated. The results showed that TiC ceramic particles can increase wear resistance, especially by aging times up to 32 and 64 h. The wear mechanisms were analyzed based on the results of SEM images, EDS, and Raman spectra. The knowledge obtained herein will facilitate the design of long-service-life polymer matrix composites with promising low friction and wear performances.
Funder
National Natural Science Foundation of China
Guangyue Young Scholar Innovation Team of Liaocheng University
Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Improvement Project