Modeling Approach for Reactive Injection Molding of Polydisperse Suspensions with Recycled Thermoset Composites

Author:

Jetty Bhimesh1,Wittemann Florian1ORCID,Kärger Luise1ORCID

Affiliation:

1. Department of Lightweight Engineering, Karlsruhe Institute of Technology (KIT), Rintheimer-Querallee 2, 76131 Karlsruhe, Germany

Abstract

Recycling production waste in the reactive injection molding (RIM) process is a step towards sustainability and efficient material usage. The recycled thermoset composite (RTC) material obtained by shredding the production waste is reused with a virgin thermoset composite (VTC). This study presents a mold-filling simulation approach considering this polydisperse suspension of RTC and VTC. Mold-filling simulations can assist in predicting processability and assessing the impact of reinforced RTC on the final part of production. State-of-the-art mold-filling simulations use the Cross–Castro–Macosko (CCM) model or anisotropic fiber-orientation-dependent viscosity models. The rheological parameters are determined either for the VTC or neat resin. However, these models do not account for changes in viscosity due to the reinforcing of fillers such as RTC. An effective viscosity model is developed by extending the CCM model using the stress–strain amplification approach to overcome this gap. This model is implemented in the computational fluid dynamics code OpenFOAM, and simulations are performed using an extended multiphase solver. To validate the simulations, experimental trials were executed using a two-cavity mold equipped with pressure sensors. Molding compounds with different compositions of VTC and RTC were injected at different speeds. Reinforcing VTC with RTC increases the viscosity. Results demonstrate that RTC-reinforced compounds require higher injection pressure for mold filling than VTC alone. The qualitative agreement of pressure profiles from simulations and experiments for different proportions of reinforcing RTC and different injection speeds shows that the implemented viscosity model can reproduce the experimental mold-filling behavior.

Funder

Federal Ministry of Economic Affairs and Climate Action

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3