Polypy: A Framework to Interpret Polymer Properties from Mass Spectroscopy Data

Author:

Vlnieska Vitor12ORCID,Khanda Ankita3,Gilshtein Evgeniia4,Beltrán Jorge Luis5ORCID,Heier Jakob2ORCID,Kunka Danays5ORCID

Affiliation:

1. Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland

2. Laboratory for Thin Films and Photovoltaics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland

3. Integrated Quantum Optics, Institute for Photonic Quantum Systems (PhoQS), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany

4. Department of Electrical and Photonics Engineering, Technical University of Denmark, Anker Engelunds Vej 101, 2800 Kongens Lyngby, Denmark

5. Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

Mass spectroscopy (MS) is a robust technique for polymer characterization, and it can provide the chemical fingerprint of a complete sample regarding polymer distribution chains. Nevertheless, polymer chemical properties such as polydispersity (Pd), average molecular mass (Mn), weight average molecular mass (Mw) and others are not determined by MS, as they are commonly characterized by gel permeation chromatography (GPC). In order to calculate polymer properties from MS, a Python script was developed to interpret polymer properties from spectroscopic raw data. Polypy script can be considered a peak detection and area distribution method, and represents the result of combining the MS raw data filtered using Root Mean Square (RMS) calculation with molecular classification based on theoretical molar masses. Polypy filters out areas corresponding to repetitive units. This approach facilitates the identification of the polymer chains and calculates their properties. The script also integrates visualization graphic tools for data analysis. In this work, aryl resin (poly(2,2-bis(4-oxy-(2-(methyloxirane)phenyl)propan) was the study case polymer molecule, and is composed of oligomer chains distributed mainly in the range of dimers to tetramers, in some cases presenting traces of pentamers and hexamers in the distribution profile of the oligomeric chains. Epoxy resin has Mn = 607 Da, Mw = 631 Da, and polydispersity (Pd) of 1.015 (data given by GPC). With Polypy script, calculations resulted in Mn = 584.42 Da, Mw = 649.29 Da, and Pd = 1.11, which are consistent results if compared with GPC characterization. Additional information, such as the percentage of oligomer distribution, was also calculated and for this polymer matrix it was not possible to retrieve it from the GPC method. Polypy is an approach to characterizing major polymer chemical properties using only MS raw spectra, and it can be utilized with any MS raw data for any polymer matrix.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3