Anticorrosion Performance of Waterborne Coatings with Modified Nanoscale Titania under Subtropical Maritime Climate

Author:

Lyu Yang1ORCID,Sun Weipeng2,Feng Tingyou2,Li Wenge3,Jiang Yong2,Zuo Chenglin4,Wang Shuangxi1ORCID

Affiliation:

1. College of Engineering, Shantou University, Shantou 515063, China

2. Huaneng Power Company (Guangdong), Guangzhou 510000, China

3. College of Merchant Marine, Shanghai Maritime University, Shanghai 201306, China

4. Shanghai Qixiangqingchen Coatings Technology Co., Ltd., Shanghai 201500, China

Abstract

Steel structures located in subtropical marine climates face harsh conditions such as strong sunlight and heavy rain, and they are extremely corroded. In this study, a waterborne coating with excellent corrosion resistance, hydrophobic ability, high-temperature resistance and high density was successfully prepared by using modified nanoscale titania powders and grafted polymers. The effects of three modifiers on titania nanoparticles and waterborne coatings’ properties were studied independently. The experimental results showed that the activation index of the modification employing methacryloxy silane reached 97.5%, which achieved the best modification effect at 64.4 °C for 43.3 min. The waterborne coating with nanoscale titania modified by methacryloxy silane exhibited the best hydrophobic effect, with a drop contact angle of 115.4° and excellent heat resistance of up to 317.2 °C. The application of the waterborne modified coating in steel structures under subtropical maritime climates showed that the waterborne titania coatings demonstrated excellent resistance to corrosion, high temperatures and harsh sunlight, with a maximum service life of up to five years. Economic analysis indicated that, considering a conservative three-year effective lifespan, this coating could save more than 50% in cost compared with conventional industrial coatings. Finally, the strengthening mechanism of the polymer coatings with modified nanoscale titania was analyzed.

Funder

Guangdong Science and Technology Innovation Fund

Science and Technology Project of the Huaneng Group

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3