Effect of Technological Factors on the Extraction of Polymeric Condensed Tannins from Acacia Species

Author:

Osman Zeinab123ORCID,Pizzi Antonio2ORCID,Elbadawi Mohammed Elamin1,Mehats Jérémy3,Mohammed Wadah13ORCID,Charrier Bertrand3

Affiliation:

1. Institute of Engineering Research and Materials Technology, National Center for Research, Khartoum P.O. Box 2404, Sudan

2. ENSTIB-LERMAB, University of Lorraine, 27, Rue Philippe Seguin, 88000 Epinal, France

3. University of Pau and the Adour Region, E2S UPPA, CNRS, Institute of Analytical Sciences and Physico-Chemistry for the Environment and Materials-Xylomat (IPREM-UMR5254), 40004 Mont de Marsan, France

Abstract

The aim of this research work was to investigate the influence of parameters such as particle size, mass/solvent ratio, temperature and spray drying on the tannin extraction process in order to develop cost-effective methods with better environmental and structural performance. The pods of Acacia nilotica ssp. tomentosa (ANT) were fractionated into three fractions, coarse fraction (C) (>2 mm), medium fraction (M) (1–2 mm), and fine fraction (F) < 1 mµ), and extracted with different water-to-pod ratios (2:1, 4:1 and 6:1) at different temperatures (30, 50 and 70 °C). The best results were scaled up using the three fractions of ANT, its bark and the bark of Acacia seyal var. seyal (ASS). Part of their extract was spray dried. The tannin content and total polyphenolic materials were evaluated using standard methods. Their adhesives were tested for their tensile strength. Tannins of ASS were characterized by 13C NMR and MALDI-TOF. The results revealed that the fine fraction (F) gave the highest percentage of tannins in both small and scaled-up experiments. The results of the tensile strength conformed to the European standard. The 13C NMR spectra of ANT and ASS showed that the bark contained condensed tannins mainly consisting of procyanidins/prodelphinidin of 70%/30% and 60%/40%, respectively. MALDI–TOF spectra confirmed the results obtained by 13C NMR and detailed the presence of flavonoid monomers and oligomers, some of which were linked to short carbohydrate monomers or dimers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3