Optical Characteristics of a New Molecular Complex: “Nafion–Colloidal CdSe/CdS/ZnS Nanocrystals”

Author:

Timchenko Svetlana L.1ORCID,Ambrozevich Sergey A.12,Zadorozhnyi Evgenii N.1ORCID,Zadorozhnyi Nikolai A.1,Skrabatun Alexander V.12,Sharandin Evgenii A.1

Affiliation:

1. Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Street 5, 105005 Moscow, Russia

2. P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, 119991 Moscow, Russia

Abstract

Here, the optical properties of the Nafion polymer membrane containing colloidal CdSe/CdS/ZnS nanocrystals embedded by diffusion have been studied. The CdSe/CdS/ZnS nanocrystals have a core/shell/shell appearance. All experiments were carried out at room temperature (22 ± 2) °C. A toluene solution was used to provide mobility to the active sulfone groups of the Nafion membrane and to embed the nanocrystals inside the membrane. The diffusion process of colloidal CdSe/CdS/ZnS nanocrystals into Nafion proton exchange membrane has resulted in a new molecular complex “Nafion–colloidal CdSe/CdS/ZnS nanocrystals”. The kinetics of the nanocrystals embedding into the membrane matrix was investigated using luminescence analysis and absorption spectroscopy techniques. The embedding rate of CdSe/CdS/ZnS nanocrystals into the Nafion polymer membrane was approximately 4·10−3 min−1. The presence of new luminescence centers in the membrane was proved independently by laser emission spectroscopy. The luminescence spectrum of the resulting molecular complex contains intensity maxima at wavelengths of 538, 588, 643 and 700 nm. The additional luminescence maximum observed at the 643 nm wavelength was not recorded in the original membrane, solvent or in the spectrum of the semiconductor nanoparticles. The luminescence maximum of the colloidal CdSe/CdS/ZnS nanocrystals was registered at a wavelength of 634 nm. The intensity of the luminescence spectrum of the membrane with embedded nanocrystals was found to be higher than the intensity of the secondary emission peak of the initial nanocrystals, which is important for the practical use of the “Nafion–colloidal nanocrystals” complex in optical systems. The lines contained in the luminescence spectrum of the membrane, which has been in solution with colloidal nanocrystals for a long time, registered upon its drying, show the kinetics of the formation of the molecular complex “Nafion membrane–nanocrystals”. Colloidal nanocrystals located in the Nafion matrix represent an analog of a luminescent transducer.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3