Influence of the Manufacturing Method (3D Printing and Injection Molding) on Water Absorption and Mechanical and Thermal Properties of Polymer Composites Based on Poly(lactic acid)

Author:

Mukoroh Paul Forbid1,Gouda Fathi2,Skrifvars Mikael3ORCID,Ramamoorthy Sunil Kumar3ORCID

Affiliation:

1. School of Engineering, Culture and Wellbeing, Arcada University of Applied Science, 00560 Helsinki, Finland

2. Department of Engineering, Faculty of Textiles, Engineering and Business, University of Borås, 501 90 Borås, Sweden

3. Swedish Centre for Resource Recovery, Department of Resource Recovery and Building Technology, Faculty of Textiles, Engineering and Business, University of Borås, 501 90 Borås, Sweden

Abstract

The manufacturing method influences the properties of the produced components. This work investigates the influence of manufacturing methods, such as fused deposition modeling (3D printing) and injection molding, on the water absorption and mechanical and thermal properties of the specimens produced from neat bio-based poly(lactic acid) (PLA) polymer and poly(lactic acid)/wood composites. Acrylonitrile butadiene styrene (ABS) acts as the reference material due to its low water absorption and good functional properties. The printing layer thickness is one of the factors that affects the properties of a 3D-printed specimen. The investigation includes two different layer thicknesses (0.2 mm and 0.3 mm) while maintaining uniform overall thickness of the specimens across two manufacturing methods. 3D-printed specimens absorb significantly higher amounts of water than the injection-molded specimens, and the increase in the layer thickness of the 3D-printed specimens contributes to further increased water absorption. However, the swelling due to water absorption in 3D-printed specimens decreases upon increased layer thickness. The tensile, flexural, and impact properties of all of the specimens decrease after water absorption, while the properties improve upon decreasing the layer thickness. Higher porosity upon increasing the layer thickness is the predominant factor. The results from dynamic mechanical analysis and microscopy validate the outcomes. The results from this experimental study highlight the limitations of additive manufacturing.

Publisher

MDPI AG

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3