Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review

Author:

Yadav Manisha1,Singh Nagender2ORCID,Annu 3ORCID,Khan Suhail Ayoub45,Raorane Chaitany Jayprakash6ORCID,Shin Dong Kil3

Affiliation:

1. Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

2. Department of Fashion and Apparel Engineering, The Technological Institute of Textile and Sciences, Bhiwani 127021, India

3. Materials Laboratory, School of Mechanical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea

4. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China

5. IAMFE, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

6. School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea

Abstract

This review embarks on a comprehensive journey, exploring the application of lignocellulosic biomass materials as highly effective adsorbents for the removal of textile dyes (cationic and anionic dyes) from wastewater. A literature review and analysis were conducted to identify existing gaps in previous research on the use of lignocellulosic biomass for dye removal. This study investigates the factors and challenges associated with dye removal methods and signifies their uses. The study delves into the pivotal role of several parameters influencing adsorption, such as contact time, pH, concentration, and temperature. It then critically examines the adsorption isotherms, unveiling the equilibrium relationship between adsorbent and dye and shedding light on the mechanisms of their interaction. The adsorption process kinetics are thoroughly investigated, and a detailed examination of the adsorbed rate of dye molecules onto lignocellulosic biomass materials is carried out. This includes a lively discussion of the pseudo-first, pseudo-second, and intra-particle diffusion models. The thermodynamic aspects of the adsorption process are also addressed, elucidating the feasibility and spontaneity of the removal process under various temperature conditions. The paper then dives into desorption studies, providing insights into the regeneration potential of lignocellulosic biomass materials for sustainable reusability. The environmental impact and cost-effectiveness of employing lignocellulosic biomass materials in textiles including Congo Red, Reactive Black 5, Direct Yellow 12, Crystal Violet, Malachite Green, Acid Yellow 99, and others dyes from wastewater treatment are discussed, emphasizing the significance of eco-friendly solutions. In summary, this review brings together a wealth of diverse studies and findings to present a comprehensive overview of lignocellulosic biomass materials as adsorbents for textile cationic and anionic dye removal, encompassing various aspects from influential parameters to kinetics, adsorption isotherms, desorption, and thermodynamics studies. Its scope and other considerations are also discussed along with its benefits. The collective knowledge synthesized in this paper is intended to contribute to the advancement of sustainable and efficient water treatment technologies in the textile industry.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3