Affiliation:
1. Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda S-N, 45071 Toledo, Spain
2. Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla-La Mancha, Avda. Carlos III, 45071 Toledo, Spain
Abstract
Electroactive microfiber-based scaffolds aid neural tissue repair. Carbon microfibers (CMFs) coated with the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)] (PEDOT:PSS-co-MA) provide efficient support and guidance to regrowing axons across spinal cord lesions in rodents and pigs. We investigated the electrical and structural performance of PEDOT:PSS-co-MA-coated carbon MFs (PCMFs) for long-term, biphasic electrical stimulation (ES). Chronopotentiometry and electrochemical impedance spectroscopy (EIS) allowed the characterization of charge transfer in PCMFs during ES in vitro, and morphological changes were assessed by scanning electron microscopy (SEM). PCMFs that were 4 mm long withstood two-million-biphasic pulses without reaching cytotoxic voltages, with a 6 mm length producing optimal results. Although EIS and SEM unveiled some polymer deterioration in the 6 mm PCMFs, no significant changes in voltage excursions appeared. For the preliminary testing of the electrical performance of PCMFs in vivo, we used 12 mm long, 20-microfiber assemblies interconnected by metallic microwires. PCMFs-assemblies were implanted in two spinal cord-injured pigs and submitted to ES for 10 days. A cobalt–alloy interconnected assembly showed safe voltages for about 1.5 million-pulses and was electrically functional at 1-month post-implantation, suggesting its suitability for sub-chronic ES, as likely required for spinal cord repair. However, improving polymer adhesion to the carbon substrate is still needed to use PCMFs for prolonged ES.
Funder
European Union
Consejería de Educación, Cultura y Deportes de la Junta de Comunidades de Castilla La-Mancha