Affiliation:
1. State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract
An integrated visual energy system consisting of conjugated polymer electrodes is promising for combining electrochromism with energy storage. In this work, we obtained copolymer bifunctional electrodes poly(3,6-dimethoxythieno[3,2-b]thiophene-co-2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethanol)(P(TT-OMe-co-EDTM)) by one-step electrochemical copolymerization, which exhibits favorable electrochromic and capacitive energy storage properties. Because of the synergistic effect of PTT-OMe and PEDTM, the prepared copolymers show better flexibility. Moreover, the morphology and electrochemical properties of the copolymers could be adjusted by depositing different molar ratios of 3,6-dimethoxythieno[3,2-b]thiophene (TT-OMe) and 2,3-dihydrothieno[3,4-b][1,4] dioxin-3-ylmethanol (EDTM). The P(TT-OMe-co-EDTM) electrodes realized a high specific capacitance (190 F/g at 5 mV/s) and recognizable color conversion. This work provides a novel and simple way to synergistically improve electrochromic and energy storage properties and develop thiophene-based conducting polymers for electrochromic energy storage devices.
Funder
National Science Foundation of China
Sichuan Science and Technology Program
Sichuan Province Key Laboratory of Display Science and Technology
Qiantang Science & Technology Innovation Center