Effects of Particle Size on Mechanical Properties and Forming Accuracy of Prosopis chilensis Powder/Polyethersulfone Composites Produced via Selective Laser Sintering

Author:

Abdelmagid Alaaeldin A. A.1,Idriss Aboubaker I. B.23ORCID,Yang Chun-Mei2

Affiliation:

1. School of Civil Engineering, Quanzhou University of Information Engineering, Quanzhou 362008, China

2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

3. Department of Mechanical Engineering, Faculty of Engineering Science, University of Nyala, P.O. Box 155, Nyala 63312, Sudan

Abstract

Wood–plastic composites are becoming increasingly recognized for their sustainability and their potential for use in various production processes. Nevertheless, enhancing their mechanical strength continues to be a difficult challenge. The objective of this research was to improve the mechanical strength of wood–plastic composite components manufactured through selective laser sintering (SLS). This was achieved by integrating a sustainable composite material, Prosopis chilensis (PCP), with polyethersulfone (PES) to form a composite referred to as PCPC. This study showcased the effect of various PCP particle sizes on mechanical strengths, dimensional accuracies (DAs), and surface roughness of PCPC parts manufactured using AFS-360 SLS. Single-layer sintering was employed to assess PCPC powder’s formability with varying PCP particle sizes, and various tests were conducted to understand the materials’ thermal properties and analyze particle dispersion and microstructure. The results demonstrated that PCP particle sizes ≤ 0.125 mm significantly enhanced the mechanical strength, forming quality, and DA compared to other particle sizes and pure PES. Key findings for PCPC parts with PCP ≤ 0.125 mm included a bending strength of 10.78 MPa, a tensile strength of 4.94 MPa, an impact strength of 0.91 kJ/m2, and a density of 1.003 g/cm3. Post-processing further improved these parameters, confirming that optimizing PCP particle size is crucial for enhancing the mechanical properties and overall quality of PCPC parts produced via SLS.

Funder

Natural Science Foundation of Heilongjiang Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3