All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting

Author:

Cao Mengyao12,Chen Yanglei12,Sha Jie12,Xu Yanglei12,Chen Sheng123ORCID,Xu Feng12

Affiliation:

1. State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China

2. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China

3. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China

Abstract

Triboelectric nanogenerators (TENGs) show promising potential in energy harvesting and sensing for various electronic devices in multiple fields. However, the majority of materials currently utilized in TENGs are unrenewable, undegradable, and necessitate complex preparation processes, resulting in restricted performance and durability for practical applications. Here, we propose a strategy that combines straightforward chemical modification and electrospinning techniques to construct all-cellulose nanofiber-based TENGs with substantial power output. By using cellulose acetate (CA) as the raw material, the prepared cellulose membranes (CMs) and fluorinated cellulose membranes (FCMs) with different functional groups and hydrophobic properties are applied as the tribopositive and tribonegative friction layers of FCM/CM-based triboelectric nanogenerators (FC-TENGs), respectively. This approach modulates the microstructure and triboelectric polarity of the friction materials in FC-TENGs, thus enhancing their triboelectric charge densities and contact areas. As a result, the assembled FC-TENGs demonstrate enhanced output performance (94 V, 8.5 µA, and 0.15 W/m2) and exceptional durability in 15,000 cycles. The prepared FC-TENGs with efficient energy harvesting capabilities can be implemented in practical applications to power various electronic devices. Our work strengthens the viability of cellulose-based TENGs for sustainable development and provides novel perspectives on the cost-effective and valuable utilization of cellulose in the future.

Funder

National Natural Science Foundation of China

Foundation of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3