Tuning Electro-Optical Characteristics through Polymerization Monomer Content in PSVA Liquid Crystal Displays: Simulation and Experimentation

Author:

Zhang Xiaoyu1,Lin Wei1,Liu Jiezhen1,Liu Jiangwen2,Weng Can13ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

2. Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

3. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China

Abstract

The enhancement of display performance and durability in polymer-stabilized vertical alignment liquid crystal and the liquid crystal are negative liquid crystals, which can be vertically aligned under the action of a vertical orientation layer and an electric field. Devices (PSVA LCDs) are crucial for advancing LCD technology. This study aims to investigate the electro-optical characteristics of PSVA LCDs by varying polymerization monomer concentrations. Using both simulations via TechWiz LCD 3D and experimental methods, such as polymer-induced phase separation, we developed an optoelectronic testing framework to assess voltage transmittance and response times. In our main findings, we show that an increase in polymeric monomer concentration from 3% to 7% resulted in a 67% increase in threshold voltage and a 44% decrease in saturation voltage. The on-state response time increased by about a factor of three, while the off-state response time decreased by about a factor of three. The alignment of our simulation results with experimental data validates our methodology, offering the potential of simulation tools as a pivotal resource in the PSVA LCDs. The alignment of our simulation results with experimental data validates our methodology, offering the potential of simulation tools as a pivotal resource in the PSVA LCDs. These advancements promise significant improvements in PSVA LCD performance and durability.

Funder

National Natural Science Foundation of China

Natural Science Foundation, Hunan Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3